Plant community feedbacks and long-term ecosystem responses to multi-factored global change
نویسندگان
چکیده
While short-term plant responses to global change are driven by physiological mechanisms, which are represented relatively well by models, long-term ecosystem responses to global change may be determined by shifts in plant community structure resulting from other ecological phenomena such as interspecific interactions, which are represented poorly by models. In single-factor scenarios, plant communities often adjust to increase ecosystem response to that factor. For instance, some early global change experiments showed that elevated CO2 favours plants that respond strongly to elevated CO2, generally amplifying the response of ecosystem productivity to elevated CO2, a positive community feedback. However, most ecosystems are subject to multiple drivers of change, which can complicate the community feedback effect in ways that are more difficult to generalize. Recent studies have shown that (i) shifts in plant community structure cannot be reliably predicted from short-term plant physiological response to global change and (ii) that the ecosystem response to multi-factored change is commonly less than the sum of its parts. Here, we survey results from long-term field manipulations to examine the role community shifts may play in explaining these common findings. We use a simple model to examine the potential importance of community shifts in governing ecosystem response. Empirical evidence and the model demonstrate that with multi-factored change, the ecosystem response depends on community feedbacks, and that the magnitude of ecosystem response will depend on the relationship between plant response to one factor and plant response to another factor. Tradeoffs in the ability of plants to respond positively to, or to tolerate, different global change drivers may underlie generalizable patterns of covariance in responses to different drivers of change across plant taxa. Mechanistic understanding of these patterns will help predict the community feedbacks that determine long-term ecosystem responses.
منابع مشابه
Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback.
Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow-moving factors such as shifts in vegetation community composition. Long-term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow cha...
متن کاملEcosystem feedbacks and cascade processes: understanding their role in the responses of arctic and alpine ecosystems to environmental change
Running header Change-induced feedbacks in the Arctic-alpine Word count 8158 words within the continuous narrative 4 Abstract Global environmental change, related to climate change and the deposition of airborne N-containing contaminants, has already resulted in shifts in plant community composition among plant functional types in arctic and temperate alpine regions. In this paper, we review ho...
متن کاملMicrobial mediation of carbon-cycle feedbacks to climate warming
Understanding the mechanisms of biospheric feedbacks to climate change is critical to project future climate warming1–3. Although microorganisms catalyse most biosphere processes related to fluxes of greenhouse gases, little is known about the microbial role in regulating future climate change4. Integrated metagenomic and functional analyses of a long-term warming experiment in a grassland ecos...
متن کاملSoil bacterial community succession during long-term ecosystem development.
The physicochemical and biological gradients of soil and vegetative succession along the Franz Josef chrono sequence in New Zealand were used to test whether bacterial communities show patterns of change associated with long-term ecosystem development. Pyrosequencing was conducted on soil-derived 16S rRNA genes at nine stages of ecosystem progression and retrogression, ranging in age from 60 to...
متن کاملGlobal negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.
Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litt...
متن کامل